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Introduction
∙ When the support of the distribution function depend on the

parameter, MLE may not exist or is not consistent. For
example, for the three-parameter Weibull (TPW) distribution,
when the shape parameter is less than unity, no MLE exists
(e.g., Smith, 1985).

∙ In such cases, the maximum product of spacings (MPS)
method (Cheng and Amin, 1983; Ranneby 1984) can be used.

∙ Jiang (2013) proposed a modification of MPS (Jiang’s
modified MPS, JMMPS) which reduces the bias of the shape
and scale parameters of the TPW. But the method has not
attracted much attention.

∙ Kawanishi (2020) found that the MLE, MPS and JMMPS can
be derived from the same framework: Transforming KLD to
integral over the closed interval, (then minimizing the KLD can
be seen a boundary value problem), and then applying the
method of weighted residuals.
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Why transformed KLD? Why MWR?

Transformed KLD
∙ Integral over a compact set [0, 1] is easier to handle than the

integral over entire ℝ.
∙ homogeneous partition 𝑝0 = 0, 𝑝1,… , 𝑝𝑛+1 = 1 of the interval
[0, 1].

MWR
∙ Various method under the theory of MWR can be applied;
∙ the Galerkin method leads to the formation of Jiang’s modified

MPS (JMMPS);
∙ the ML, MPS and JMMPS can be constructed under one

theory.
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Continuous empirical quantile function

We define 𝑄E(𝑝, 𝜃) ↦ 𝑥 as follows.

(a) As the values of 𝑄E at points 0, 𝑝1,… , 𝑝𝑛, 1,

𝑄E(0, 𝜃) = ∗𝑥;

𝑄E(𝑝𝑖, 𝜃) = 𝑋(𝑖), 𝑝𝑖 =
𝑖

𝑛 + 1
, 𝑖 = 1,… 𝑛;

𝑄E(1, 𝜃) = 𝑥∗;

where ∗𝑥 = inf{𝑥 ∶ 𝐹 (𝑥, 𝜃) > 0}, 𝑥∗ = sup{𝑥 ∶ 𝐹 (𝑥; 𝜃) < 1}.

(b) the function 𝑄E is continuous with respect to 𝑝;

(c) on each interval (𝑝𝑖−1, 𝑝𝑖), 𝑖 = 1,… , 𝑛 + 1, 𝑄E is twice
continuously differentiable with respect to 𝑝 and 𝜃;

(d) fix 𝜃, 𝑄E is an increasing function of 𝑝.
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Transformed KLD
∙ Transformed continuous edf

𝐹 E ∶= 𝐹◦(𝑄E, 𝜋𝜃), (𝜋𝜃 ∶ (𝑝, 𝜃) ↦ 𝜃 is a projection.) (1)

∙ Let 𝐹0 be the true distribution and let

𝐹 E ∶= 𝐹 E◦(𝐹0, 𝜋
𝜃), 𝑓E = 𝜕𝐹 E

𝜕𝑥
(𝑥, 𝜃), (2)

we have
𝑓0
𝑓E = 1

𝜕𝐹 E

𝜕𝑝

∙ Transformed KLD

−𝐷KL(𝜃, 𝜃0) = −∫
∞

∞
log

(
𝑓0
𝑓E

)
𝑓0 𝑑𝑥 = ∫

1

0
log

(
𝜕𝐹 E

𝜕𝑝

)
𝑑𝑝

(3)
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Minimizing KLD as a BVP

∙ To find the minimizer, we look for the stationary points.

0 = − 𝜕
𝜕𝜃

𝐷KL = ∫
1

0

𝐹 E
𝑝𝜃

𝐹 E
𝑝
𝑑𝑝 =

𝑛+1∑
𝑖=1

∫
𝑝𝑖

𝑝𝑖−1

𝐹 E
𝜃𝑝

𝐹 E
𝑝
𝑑𝑝. (4)

∙ Boundary conditions:

𝐹 E
𝜃 (0; 𝜃) = 𝐹 E

𝜃 (1; 𝜃) = 0

∙ But lim𝑝↓0 𝐹 E
𝜃 (𝑝; 𝜃) or lim𝑝↑1 𝐹 E

𝜃 (𝑝; 𝜃) can be nonzero, including
infinity.
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KLDMWR–collocation estimator (CE)

∙ In the collocation method of MWR, we use the function itself
as the trial function and use Dirac’s delta function as the
weighting function.

(𝑅,𝑤) =
𝑛∑
𝑖=1

𝐹 E
𝜃𝑝

𝐹 E
𝑝

||||||𝑝𝑖 =
𝑛∑
𝑖=1

𝑓𝜃(𝑋(𝑖))
𝑓 (𝑋(𝑖))

= 0, (5)

which is nothing but the likelihood equation.
∙ 𝑋(𝑖) represents the order statistics of the sample 𝑋.

∙ The collocation method leads to the ML.
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KLDMWR–subdomain estimator (SE)
∙ In the subdomain method, the trial function is a simple

function: constant over each interval; the weighting functions
are indicator function of the interval. The trial functions are

𝐹 E
𝜃𝑝

𝐹 E
𝑝

=
𝐹𝜃(𝑋(𝑖)) − 𝐹𝜃(𝑋(𝑖−1))
𝐹 (𝑋(𝑖)) − 𝐹 (𝑋(𝑖−1))

∙ Making the weighted residual zero (𝑅,𝑤) = 0 yields

(𝑅,𝑤) = 1
𝑛 + 1

𝑛+1∑
𝑖=1

𝐹𝜃(𝑋(𝑖)) − 𝐹𝜃(𝑋(𝑖−1))
𝐹 (𝑋(𝑖)) − 𝐹 (𝑋(𝑖−1))

= 1
𝑛 + 1

𝑛+1∑
𝑖=1

𝐷𝜃,𝑖

𝐷𝑖
= 0 (6)

∙ The subdomain method leads to the maximum product of
spacings (MPS) method.
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KLDMWR–Galerkin estimator (GE) 1

∙ We use the same basis function for trial and weighting
functions.

∙ Basis function 𝑖 = 0,… , 𝑛 + 1,

𝜙𝑖 =

⎧⎪⎨⎪⎩
𝑦 − 𝑝𝑖−1
𝑝𝑖 − 𝑝𝑖−1

𝑝𝑖−1 ≤ 𝑦 ≤ 𝑝𝑖, (𝑖 ≥ 1);
𝑝𝑖+1 − 𝑦
𝑝𝑖+1 − 𝑝𝑖

𝑝𝑖 ≤ 𝑦 ≤ 𝑝𝑖+1, (𝑖 ≤ 𝑛).
(7)

(
d𝜙
d𝑝

)
𝑖
=

⎧⎪⎨⎪⎩
1

𝑝𝑖 − 𝑝𝑖−1
𝑝𝑖−1 ≤ 𝑦 ≤ 𝑝𝑖, (𝑖 ≥ 1);

−1
𝑝𝑖+1 − 𝑝𝑖

𝑝𝑖 ≤ 𝑦 ≤ 𝑝𝑖+1, (𝑖 ≤ 𝑛).
(8)
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KLDMWR–Galerkin estimator (GE) 2

∙ Trial functions (
𝐹 E
𝑝

)ℎ
=

𝑛+1∑
𝑖=0

𝐹 E(𝑝𝑖)
(
𝜕𝜙𝑖

𝜕𝑝

)
(
𝐹 E
𝜃𝑝

)ℎ
=

𝑛+1∑
𝑖=0

𝐹 E
𝜃 (𝑝𝑖)

(
𝜕𝜙𝑖

𝜕𝑝

)
∙ Weighting function

𝑤(𝑝) =
𝑛∑
𝑖=1

𝜙𝑖(𝑝) (9)

enditemize
∙ This weighting function satifies the boundary conditions
𝑤(0) = 𝑤(1) = 0. (Note 𝐹 E

𝜃 (0; 𝜃) = 𝐹 E
𝜃 (1; 𝜃) = 0.)
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KLDMWR–Galerkin estimator (GE) 3
∙ Let the weighting function be a linear combination of 𝜙𝑖, then

∫
𝑝𝑖

𝑝𝑖−1

(
𝜕𝐹 E

𝜃

𝜕𝑝
𝜕𝑝
𝜕𝐹 E

)ℎ

𝑤 d𝑡

= ∫
𝑝𝑖

𝑝𝑖−1

𝐹 E
𝜃,𝑖 − 𝐹 E

𝜃,𝑖−1

𝑝𝑖 − 𝑝𝑖−1

𝑝𝑖 − 𝑝𝑖−1
𝐹 E
𝑖 − 𝐹 E

𝑖−1

{
𝑡 − 𝑝𝑖−1
𝑝𝑖 − 𝑝𝑖−1

+
𝑝𝑖 − 𝑡

𝑝𝑖 − 𝑝𝑖−1

}
𝑑𝑡

= (𝑝𝑖 − 𝑝𝑖−1)
𝐹 E
𝜃,𝑖 − 𝐹 E

𝜃,𝑖−1

𝐹 E
𝑖 − 𝐹 E

𝑖−1

= 1
𝑛 + 1

𝐹𝜃(𝑋(𝑖)) − 𝐹𝜃(𝑋(𝑖−1))
𝐹 (𝑋(𝑖)) − 𝐹 (𝑋(𝑖−1))

;

∫
𝑝1

0

(
𝜕𝐹 E

𝜃

𝜕𝑝
𝜕𝑝
𝜕𝐹 E

)ℎ

𝑤𝑑𝑡 = 1
2(𝑛 + 1)

𝐹𝜃(𝑋(1))
𝐹 (𝑋(1))

;

∫
1

𝑝𝑛

(
𝜕𝐹 E

𝜃

𝜕𝑝
𝜕𝑝
𝜕𝐹 E

)ℎ

𝑤𝑑𝑡 = 1
2(𝑛 + 1)

−𝐹𝜃(𝑋(𝑛))
1 − 𝐹 (𝑋(𝑛))

.
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KLDMWR–Galerkin estimator (GE) 4

∙ Making the weighted residual zero,

⎛⎜⎜⎝
(
𝜕𝐹 E

𝜃

𝜕𝑝
𝜕𝑝
𝜕𝐹 E

)ℎ

, 𝑤
⎞⎟⎟⎠ = 0,

yields

(𝑅,𝑤) = 1
𝑛 + 1

(
1
2
𝐷𝜃,1

𝐷1
+

𝑛∑
𝑖=2

𝐷𝜃,𝑖

𝐷𝑖
+ 1

2
𝐷𝜃,𝑛+1

𝐷𝑛+1

)
= 0 (10)

∙ where 𝐷𝑖 ∶= 𝐹 (𝑋(𝑖)) − 𝐹 (𝑋(𝑖−1)), 𝐷𝜃,𝑖 ∶= 𝐹𝜃(𝑋(𝑖)) − 𝐹𝜃(𝑋(𝑖−1))
∙ and 𝐹 (𝑋(0)) = 𝐹𝜃(𝑋(0)) = 𝐹𝜃(𝑋(𝑛+1)) = 0, 𝐹 (𝑋(𝑛+1)) = 1,

∙ The Galerkin method leads to Jiang’s modified maximum
product of spacings (JMMPS) method.
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Advantages of MPS and JMMPS over ML

∙ Applicable for nonregular cases.
∙ Let us assume that 𝑄E is linear in each interval [𝑝𝑖−1, 𝑝𝑖), a

modest assumption. Then for a fixed 𝜃,

∫
𝑝1

0

𝐹 E
𝜃𝑝

𝐹 E
𝑝

𝑑𝑝 = 1
𝐹 E
𝑝

⎧⎪⎨⎪⎩𝐹
E
𝜃 (𝑝1; 𝜃) − 𝐹 E

𝜃 (0; 𝜃)
⏟⏞⏟⏞⏟

=0

⎫⎪⎬⎪⎭
∫

1

𝑝𝑛

𝐹 E
𝜃𝑝

𝐹 E
𝑝

𝑑𝑝 = 1
𝐹 E
𝑝

⎧⎪⎪⎨⎪⎪⎩
𝐹 E
𝑝 (1; 𝜃)

⏟⏞⏟⏞⏟
=0

−𝐹 E
𝜃 (𝑝1; 𝜃)

⎫⎪⎪⎬⎪⎪⎭
∙ Even if 𝑓𝜃∕𝑓 is unbounded, ∫ 𝑝𝑖

𝑝𝑖−1
𝐹 E
𝜃𝑝∕𝐹

E
𝑝 𝑑𝑝 can be calculated:

𝐹 E
𝜃 is usually bounded.
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As boundary value problems

∙ Problem of the dependence of distribution function on the
parameter is converted to the singularity in boundary values.

∙ For example, for the three parameter Weibull (TPW)
distribution, ML does not work when the shape parameter
𝜉 < 1. In that case, the boundary value is

𝐹 E
𝜃 (0, 𝜃) = 0||||lim𝑝↓0 𝐹 E
𝜃 (𝑝, 𝜃)

|||| = ∞

∙ BVP in statistics? The boundary conditions are the properties
of distribution functions.
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Conclusions and future work

∙ With the KLDMWR framework we deal with the estimators, (at
least) MLE, MPSE, and JMMPSE under the same theory.

∙ The problem of the dependence of the support of distribution
on the parameter is converted to the singularity of the
boundary conditions.

∙ Effects of the scheme of solving BVP sample performance of
estimators for small samples are to be investigated.

∙ Advantages and disadvantages of the estimators under the
light of the methods for BVP are to be explored.
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