From Poisson to Lévy Process Demystifying Lévy Measure and Compensation of Small Jumps

Takuya Kawanishi

Kawanishi Laboratory of Risk and Statistical Analysis

April 29, 2025

Table of Contents

Lévy Process

Introduction

Poisson Process

Definition

Superposition and Thinning

Characteristic Function

Definition

Sum of Independent Random Variables

Compound Poisson Process

Definition and Characteristic Function Jumps in a Certain Range

Lévy Measure

Compensated Process

Lévy Process

Conclusions

Introduction I

This material aims to provide basic insights into the jumps in Lévy processes, tailored for engineers and scientists from non-mathematical backgrounds.

You will learn:

- 1. Poisson and compound Poisson processes, including their superposition and thinning;
- 2. How the Lévy measure determines the intensity of jumps;
- Why compensation of small jumps is necessary and how this compensation works.
- Measure theory is not used.
- We focus exclusively on jump processes and do not cover Brownian motion.

Poisson Process • Definition I

Definition 1.1

A Poisson process N_t (or N(t)) with intensity (rate parameter) $\lambda > 0$ is defined by the following formula, where \mathbb{P} denotes probability

$$\mathbb{P}[N_t = k] = e^{-\lambda t} \frac{(\lambda t)^k}{k!}.$$
(1.1)

Figure 1.1 Example of Poisson process.

Poisson Process • Superposition and Thinning I

Proposition 1.2 (Superposition or sum of Poisson processes)

- Let N₁(t) and N₂(t) be two independent Poisson processes with rate parameters λ₁ and λ₂, respectively.
- Then the sum (or superposition) $N(t) = N_1(t) + N_2(t)$ is also a Poisson process with rate parameter $\lambda = \lambda_1 + \lambda_2$.

Proposition 1.3 (Thinning of Poisson process)

- Consider a Poisson process N_t with rate parameter λ .
- Suppose the occurrences consist of several categories, one of which (say, category A) occurs randomly with probability p_A among the occurrences.
- Then, the process restricted to category A is also a Poisson process with rate parameter $p_A \lambda$.
- This construction of the new Poisson process is called thinning, and the resulting process is sometimes referred to as a thinned process.

Poisson Process • Superposition and Thinning II

Figure 1.2 Example of thinning of Poisson process: N_t^M and N_t^F are created by thinning from N_t . Conversely, the superposition of N_t^M and N_t^F forms N_t . Let the rate parameters of N_t , N_t^M , and N_t^F be λ , λ^M , and λ^F , respectively, and the probabilities of realization of M and F be p and 1-p, respectively. Then $\lambda = \lambda^M + \lambda^F = \lambda p + \lambda(1-p)$.

Characteristic Function • Definition I

Definition 1.4 (Characteristic function)

The characteristic function of a random variable X is defined as follows:

$$\varphi_X(\xi) := \mathbb{E}\left[e^{i\xi X}\right]. \tag{1.2}$$

Remark 1.5

- The characteristic function determines the distribution, and vice versa.
- The notation φ(X; ξ) is also used.
- If the random variable has a probability density function, then the characteristic function is the Fourier transform of the density function,

$$\mathbb{E}\left[e^{i\xi X}\right] = \int_{\mathbb{R}} e^{i\xi x} f(x) \, dx. \tag{1.3}$$

In this case, the notation $\hat{f}(\xi) = \mathbb{E}\left[e^{i\xi X}\right]$ is also used, where \hat{f} is the usual notation for the Fourier tranform of f.

Characteristic Function • Sum of Independent Random Variables I

Proposition 1.6 (Characteristic function of sum of random variables)

1. Let X and Y be independent random variables. Then the characteristic function of the random variable X + Y is given by the following equation

$$\varphi_{X+Y}(\xi) = \mathbb{E}\left[e^{i\xi(X+Y)}\right] = \mathbb{E}\left[e^{i\xi X}e^{i\xi Y}\right]$$
$$= \mathbb{E}\left[e^{i\xi X}\right] \mathbb{E}\left[e^{i\xi Y}\right] = \varphi_X(\xi)\varphi_Y(\xi).$$
(1.4)

2. Let $Y_n = \sum_{i=1}^n X_i$, where X_i 's are independent and identically distributed (iid). Then the characteristic function of Y_n is givewn by the following equation

$$\varphi(Y_n;\xi) = \varphi\left(\sum_{i=1}^n X_i;\xi\right) = \mathbb{E}\left[e^{i\xi X_1} \cdots e^{i\xi X_n}\right]$$
$$= \sum_{\substack{\text{independence}\\ independence}} \mathbb{E}\left[e^{i\xi X_1}\right] \cdots \mathbb{E}\left[e^{i\xi X_n}\right] = \left\{\mathbb{E}\left[e^{i\xi X_i}\right]\right\}^n \qquad (1.5)$$
$$= \varphi(X_i;\xi)^n.$$

Compound Poisson Process • Definition and Characteristic Function I

Definition 1.7

A compound Poisson process Y_t , with $\{X_i\}$ iid with density $f_X : \mathbb{R} \to \mathbb{R}_+$ is defined by the following equation:

$$Y_t = \sum_{i=1}^{N_t} X_i, \quad X_i \sim f_X, \quad \mathbb{P}(N_t = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!}.$$
 (1.6)

Compound Poisson Process • Definition and Characteristic Function II

Figure 1.3 Comparion of Poisson and compound Poisson processes: N_t is a Poisson process, and $Y_t = \sum_{i=1}^{N_t} X_i$ is a compound Poisson process, where $X_i \sim f_X$. In the Poisson process, the jump size is always one. In contrast, in the compound Poisson process, the jump sizes are random variables.

Compound Poisson Process • Definition and Characteristic Function III

Proposition 1.8 (Characteristic function of Poisson process)

$$\varphi_{N_t}(\xi) = \mathbb{E}\left[e^{i\xi N_t}\right] \exp\left\{t\lambda \left(e^{i\xi} - 1\right)\right\}$$
(1.7)

Theorem 1.9 (Characteristic function of compound Poisson process)

$$\varphi(Y_t;\xi) = \mathbb{E}\left[e^{i\xi Y_t}\right] = \exp\left[t\lambda \int_{\mathbb{R}} \left(e^{i\xi x} - 1\right) f(x) \, dx\right]$$
(1.8)

Compound Poisson Process • Definition and Characteristic Function IV

Proof of Proposition 1.8.

$$\varphi_{N_t}(\xi) = \varphi\left(N_t; \xi\right) = \mathbb{E}\left[e^{i\xi N_t}\right] = \sum_{k=0}^{\infty} e^{i\xi k} e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

$$= e^{-\lambda t} \sum_{k=0}^{\infty} \frac{\left(e^{i\xi}\lambda t\right)^k}{k!} = e^{-\lambda t} e^{\lambda t e^{i\xi}} = \exp\left\{\lambda t \left(e^{i\xi} - 1\right)\right\}$$
(1.9)

Lemma 1.10

1. (Conditional expectation) Let \boldsymbol{X} and \boldsymbol{Z} be random variables, then

$$\mathbb{E}\left[\mathbb{E}\left[X|Z\right]\right] = \mathbb{E}\left[X\right]. \tag{1.10}$$

2.

$$1 = \int_{\mathbb{R}} f_X(x) \, dx = \int_{\mathbb{R}} f_X(dx) \tag{1.11}$$

Compound Poisson Process • Definition and Characteristic Function V Proof of Theorem 1.9.

$$\mathbb{E}\left[e^{i\xi Y_{t}}\right] = \mathbb{E}\left[\mathbb{E}\left[e^{i\xi Y_{t}} \middle| N_{t}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[e^{i\xi \sum_{i=1}^{N_{t}} X_{i}}\right]\right]$$
$$= \mathbb{E}\left[\left(\mathbb{E}\left[e^{i\xi X_{1}}\right]\right)^{N_{t}}\right] = \sum_{n=0}^{\infty} \frac{e^{-\lambda t} \left(\lambda t\right)^{n} \left(\hat{f}_{X}(\xi)\right)^{n}}{n!}$$
$$= \exp\left\{\lambda t \left(\hat{f}_{X}(\xi) - 1\right)\right\}$$
$$= \exp\left\{t\lambda \int_{\mathbb{R}} \left(e^{i\xi x} - 1\right) f_{X}(x) dx\right\}$$
(1.12)

Compound Poisson Process • Jumps in a Certain Range I

- Let us consider a compound Poisson process $Y_t^{[1]}$ with intensity $\lambda^{[1]}$ and jump size $X_i^{[1]}$ following the density $f_X^{[1]}(x)$.
- Suppose we are interested only in jumps of magnitude within the range $[\zeta,\zeta+\Delta\zeta).$
- Then the jumps within the range $[\zeta, \zeta + \Delta \zeta)$ can be considered as a (thinned) compound Poisson process (denoted Y_t^{S1}) with intensity:

$$\lambda^{[1]} \mathbb{P}^{[1]} \left[\{ X_i^{[1]} \in [\zeta, \zeta + \Delta \zeta) \} \right] = \lambda^{[1]} \int_{\zeta}^{\zeta + \Delta \zeta} f_X^{[1]}(x) \, dx.$$
 (1.13)

Compound Poisson Process • Jumps in a Certain Range II

Figure 1.4 Compound Poisson process $Y_i^{[1]}$ with jumps $X_i^{[1]}$ and thinned process Y_t^{S1} , constructed by selecting only the jumps within the range $[\zeta, \zeta + \Delta \zeta)$.

Compound Poisson Process • Jumps in a Certain Range III

- Consider two compound Poisson processes $Y_t^{[1]}$ and $Y_t^{[2]}$ with intenisities $\lambda^{[1]}$ and $\lambda^{[2]}$, respectively, and jump sizes following densities $f_X^{[1]}$ and $f_X^{[2]}$, respectively.
- By selecting jumps of magnitude only within the range $[\zeta, \zeta + \Delta \zeta)$ from $Y_t^{[1]}$ and $Y_t^{[2]}$, we obtain two compound Poisson processes Y_t^{S1} and Y_t^{S2} .
- The superposition Y_t^{S12} of Y_t^{S1} and Y_t^{S2} is also a compound Poisson process, with intensity given by:

$$\begin{split} &\Lambda^{[1,2]}(\zeta,\Delta\zeta) \\ &= \lambda^{[1]} \mathbb{P}^{[1]} \left[X_i^{[1]} \in [\zeta,\zeta+\Delta\zeta) \right] + \lambda^{[2]} \mathbb{P}^{[2]} \left[X_j^{[2]} \in [\zeta,\zeta+\Delta\zeta) \right] \\ &= \lambda^{[1]} \int_{\zeta}^{\zeta+\Delta\zeta} f_X^{[1]}(x) \, dx + \lambda^{[2]} \int_{\zeta}^{\zeta+\Delta\zeta} f_X^{[2]} \, dx. \end{split}$$
(1.14)

Compound Poisson Process • Jumps in a Certain Range IV

Figure 1.5 Superposition $Y_t^{[1,2]}$ of compound Poisson processes $Y_t^{[1]}$ and $Y_t^{[2]}$ and the superposition Y_t^{S12} of two thinned processes constructed by selecting jumps within the range $[\zeta, \zeta + \Delta \zeta)$.

Compound Poisson Process • Jumps in a Certain Range V

• It is known that we can superpose as many as countable processes, with the intensity given by:

$$\Lambda(\zeta, \Delta\zeta) = \sum_{i=1}^{\infty} \lambda^{[i]} \mathbb{P}^{[i]} \left[X_{j_i}^{[i]} \in [\zeta, \zeta + \Delta\zeta) \right].$$
(1.15)

- To specify the intensity of the jumps in range $[\zeta, \zeta + \Delta \zeta)$ in the superposed process Y_t^s , we only need to determine $\Lambda(\zeta, \Delta \zeta)$, not necessarily all $\lambda^{[i]}$ and $\mathbb{P}^{[i]}$.
- For this purpose, we introduce a new function (measure), ν as follows:

$$\Lambda(\zeta, \Delta\zeta) = \int_{\zeta}^{\zeta+\Delta\zeta} \nu(x) dx.$$
 (1.16)

Lévy Process • Lévy Measure I

Theorem 1.11

Consider an (at most countable) mixture Y_t of compound Poisson processes, where the intensity is a function of jump size: the jumps in the range [x, x + dx) occur at intensity $\nu(x)dx$. Then the characteristic function of Y_t is given by the following equation:

$$\mathbb{E}\left[e^{i\xi Y_t}\right] = \exp\left\{t\int_{\mathbb{R}} \left(e^{i\xi x} - 1\right)\nu(x)\,dx\right\}.$$
(1.17)

┛

Definition 1.12

We call ν in Eq. (1.17) a Lévy measure.

Remark 1.13

- For a constant λ , $\nu(x) = \lambda f_X(x)$, where f_X is the density of jump size.
- Under measure theory, $\nu(x) dx$ in Eq. (1.17) is usually written as $\nu(dx)$.
- We typically impose the condition $\nu(0) = 0$ to prevent jumps of size zero.

Lévy Process • Lévy Measure II

Remark 1.14

· We impose the following conditions on the Lévy measure

$$\nu(0) = 0$$
 and (1.18)

$$\int_{\mathbb{R}} \left(\nu(x) \wedge 1\right) \, dx < \infty, \tag{1.19}$$

where $a \wedge b$ means $\min(a, b)$.

- Eq. (1.18) is used to elimate jumps of size zero, wile Eq. (1.19) ensures the integral in Eq. (1.27) is well-defined.
- Some textbooks set the range of integration to $\mathbb{R} \setminus \{0\}$ instead of \mathbb{R} . In our settings, we assume $\nu(0) = 0$ and hence this restriction of the range is not necessary.

Lévy Process • Compensated Process I

•

- The author of this material believes that the compensation in Lévy processes is best understood through concrete examples.
- To illustrate this, we use the symmetric α-stable process, which is frequently observed in real-world applications.

Lévy Process • Compensated Process II

Example 1.15

- Let $\nu(x) = C/|x|^{\alpha+1}$, $\alpha \in (0,2)$, which is the Lévy measure of the symmetric α -stable process.
- Taylor expansion of $e^{i\xi x}$ is

$$e^{i\xi x} = 1 + i\xi x + \frac{1}{2}(i\xi x)^2 + \frac{1}{6}(i\xi x)^3 \cdots$$

Thus

$$\frac{1}{C} \left(e^{i\xi x} - 1 \right) \nu(x) = \left(e^{i\xi x} - 1 \right) \frac{1}{|x|^{1+\alpha}} = \left(i\xi \right) \frac{x}{|x|^{1+\alpha}} + \frac{\left(i\xi \right)^2}{2} \frac{x^2}{|x|^{1+\alpha}} + \frac{\left(i\xi \right)^3}{6} \frac{x^3}{|x|^{1+\alpha}} + \cdots$$
(1.20)

• As $0 < \alpha < 2$, the integral of the term $(i\xi)x/|x|^{1+\alpha}$ may diverge, while the integrals of the other terms converge.

Lévy Process Compensated Process III

• In order to prevent the integral $\int_{\mathbb{R}} (e^{i\xi x} - 1) \nu(x) dx$ from diverging, we subtract the following term from the integrand:

$$(i\xi x)\nu(x) = C \frac{i\xi x}{|x|^{1+\alpha}}.$$
 (1.21)

 As the first term of (1.20) explodes only at x = 0, the compensation is necessary only for very small values of |x|. Let η > 0 be small (η ≤ 1, and it is customary to choose η = 1), and let us define the characteristic function of the compensated process as follows (where 1 is the indicator function):

$$\varphi(Y_t) := \exp\left\{t \int_{|x| \le \eta} \left(e^{i\xi x} - 1 - i\xi x\right)\nu(x) \, dx + t \int_{|x| > \eta} \left(e^{i\xi x} - 1\right)\nu(x) \, dx\right\}$$
(1.22)
$$= \exp\left\{t \int_{\mathbb{R}} \left(e^{i\xi x} - 1 - i\xi x \mathbf{1}_{|x| \le \eta}\right)\nu \, dx\right\}.$$

Lévy Process • Compensated Process IV

- In (1.20), terms $x^k/|x|^{1+\alpha}$ are odd functions if k is odd, and even functions if k is even.
- Thus, in the integration of $\left(e^{i\xi x}-1-i\xi x
 ight)$, odd terms cancel and we have

$$\frac{1}{C} \int_{|x| \le \eta} \left(e^{i\xi x} - 1 - i\xi x \right) \nu(x) dx
= \int_{|x| \le \eta} \left\{ \frac{(i\xi)^2}{2} \frac{x^2}{|x|^{1+\alpha}} + \frac{(i\xi)^4}{4!} \frac{x^4}{|x|^{1+\alpha}} + \cdots \right\} dx.$$
(1.23)

• As can be seen, the integrand contains only real terms, and the resulting integral will be a real number. We have the following result:

$$\int_{|x| \le \eta} \left(e^{i\xi x} - 1 - i\xi x \right) \nu(x) \, dx = -C_2 \xi^2 + C_4 \xi^4 + \cdots, \qquad (1.24)$$

where C_2, C_4, \ldots are positive real numbers.

Lévy Process • Compensated Process V

• As $\eta \leq 1$, $|C_4| \ll |C_2|$, we have the following approximation:

$$\int_{|x| \le \eta} \left(e^{i\xi x} - 1 - i\xi x \right) \nu(x) \, dx \approx -C_2 \xi^2.$$
 (1.25)

exp (−tC₂ξ²) with C₂ > 0 is the characteristic function of a Brownian motion.

Lévy Process • Lévy Process I

 So far, we have constructed a stochastic process that consists of jumps, where different magnitudes of jumps have different intensities of occurrence. The characteristic function of this process is expressed as follows:

$$\varphi_{Y_t}(\xi) = \mathbb{E}\left[e^{i\xi Y_t}\right]$$

= $\exp\left\{\int_{\mathbb{R}} \left(e^{i\xi x} - 1 - i\xi x \mathbf{1}_{|x| \le \eta}\right) \nu(x) dx\right\}.$ (1.26)

 A Lévy process is constructed by adding a Bronian process and a drift term to this jump process.

Theorem 1.16 (Lévy–Khintchine representation)

The characteristic function of the one-dimensional Lévy process Y_t is given by:

$$\varphi_{Y_t}(\xi) = \exp\left\{ai\xi - \frac{1}{2}\sigma^2\xi^2 + \int_{\mathbb{R}} \left(e^{i\xi x} - 1 - i\xi x \mathbf{1}_{|x| \le \eta}\right)\nu(x)dx\right\}.$$
 (1.27)

Lévy Process • Conclusions I

- You have now learned the jump process part of the Lévy process, including:
 - Poisson and compound Poisson processes;
 - Superposition of compound Poisson processes;
 - Lévy measure;
 - Compensation for (potentially infinitely many) small jumps.
- Therefore, if you also learn Brownian motion, you will understand the Lévy process.
- We have skipped many mathematical subtleties, such as measure theory and right-continuity. However, the author of this material believes that what you have learned is sufficient for utilizing the Lévy process in real-life applications.

- Sato, K (1999) Lévy process and infinitely divisible distributions, Cambridge University Press, Cambridge, UK.
- 2. Cont, R and Tankov, P (2003) Financial modelling with jump processes, Chapman and Hall/CRC, New York, USA.