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Introduction I

This material aims to provide basic insights into the jumps in Lévy processes,
tailored for engineers and scientists from non-mathematical backgrounds.

You will learn:

1. Poisson and compound Poisson processes, including their superposition
and thinning;

2. How the Lévy measure determines the intensity of jumps;

3. Why compensation of small jumps is necessary and how this compensation
works.

• Measure theory is not used.
• We focus exclusively on jump processes and do not cover Brownian

motion.



Poisson Process • Definition I

Definition 1.1
A Poisson process Nt (or N(t)) with intensity (rate parameter) λ > 0 is
defined by the following formula, where P denotes probability

P [Nt = k] = e−λt (λt)k

k! . (1.1)

Figure 1.1 Example of Poisson process.



Poisson Process • Superposition and Thinning I

Proposition 1.2 (Superposition or sum of Poisson processes)

• Let N1(t) and N2(t) be two independent Poisson processes with rate
parameters λ1 and λ2, respectively.

• Then the sum (or superposition) N(t) = N1(t) + N2(t) is also a Poisson
process with rate parameter λ = λ1 + λ2 . ⌟

Proposition 1.3 (Thinning of Poisson process)

• Consider a Poisson process Nt with rate parameter λ.
• Suppose the occurrences consist of several categories, one of which (say,

category A) occurs randomly with probability pA among the occurrences.
• Then, the process restricted to category A is also a Poisson process with

rate parameter pAλ .
• This construction of the new Poisson process is called thinning, and the

resulting process is sometimes referred to as a thinned process. ⌟



Poisson Process • Superposition and Thinning II

Figure 1.2 Example of thinning of Poisson process: NM
t and NF

t are created by
thinning from Nt. Conversely, the superposition of NM

t and NF
t forms Nt. Let the rate

parameters of Nt, NM
t , and NF

t be λ, λM, and λF, respectively, and the probabilities of
realization of M and F be p and 1−p, respectively. Thenλ = λM +λF = λp+λ(1−p).



Characteristic Function • Definition I

Definition 1.4 (Characteristic function)
The characteristic function of a random variable X is defined as follows:

φX(ξ) := E
[
eiξX

]
. (1.2)

Remark 1.5
• The characteristic function determines the distribution, and vice versa.
• The notation φ(X; ξ) is also used.
• If the random variable has a probability density function, then the

characteristic function is the Fourier transform of the density function,

E
[
eiξX

]
=
∫
R

eiξx f(x) dx. (1.3)

In this case, the notation f̂(ξ) = E
[
eiξX

]
is also used, where f̂ is the

usual notation for the Fourier tranform of f .



Characteristic Function • Sum of Independent Random Variables I

Proposition 1.6 (Characteristic function of sum of random variables)

1. Let X and Y be independent random variables. Then the characteristic
function of the random variable X + Y is given by the following equation

φX+Y (ξ) = E
[
eiξ(X+Y )] = E

[
eiξXeiξY

]
=

independence
E
[
eiξX

]
E
[
eiξY

]
= φX(ξ)φY (ξ).

(1.4)

2. Let Yn =
∑n

i=1 Xi, where Xi’s are independent and identically distributed
(iid). Then the characteristic function of Yn is givewn by the following
equation

φ (Yn; ξ) = φ

(
n∑

i=1

Xi; ξ

)
= E

[
eiξX1 · · · eiξXn

]
=

independence
E
[
eiξX1

]
· · ·E

[
eiξXn

]
=
{
E
[
eiξXi

]}n

= φ(Xi; ξ)n.

(1.5)

⌟



Compound Poisson Process • Definition and Characteristic Function I

Definition 1.7
A compound Poisson process Yt, with {Xi} iid with density fX : R → R+ is
defined by the following equation:

Yt =
Nt∑
i=1

Xi, Xi ∼ fX , P(Nt = n) = e−λt(λt)n

n! . (1.6)



Compound Poisson Process • Definition and Characteristic Function II

Figure 1.3 Comparion of Poisson and compound Poisson processes: Nt is a Poisson
process, and Yt =

∑Nt

i=1 Xi is a compound Poisson process, where Xi ∼ fX . In the
Poisson process, the jump size is always one. In contrast, in the compound Poisson
process, the jump sizes are random variables.



Compound Poisson Process • Definition and Characteristic Function III

Proposition 1.8 (Characteristic function of Poisson process)

φNt (ξ) = E
[
eiξNt

]
exp
{

tλ
(
eiξ − 1

)}
(1.7)

⌟

Theorem 1.9 (Characteristic function of compound Poisson process)

φ(Yt; ξ) = E
[
eiξYt

]
= exp

[
tλ

∫
R

(
eiξx − 1

)
f(x) dx

]
(1.8)

⌟



Compound Poisson Process • Definition and Characteristic Function IV

Proof of Proposition 1.8.

φNt (ξ) = φ (Nt; ξ) = E
[
eiξNt

]
=

∞∑
k=0

eiξke−λt (λt)k

k!

= e−λt

∞∑
k=0

(
eiξλt

)k

k! = e−λteλteiξ

= exp
{

λt
(
eiξ − 1

)} (1.9)

Lemma 1.10
1. (Conditional expectation) Let X and Z be random variables, then

E [E [X|Z]] = E [X] . (1.10)

2.

1 =
∫
R

fX(x) dx =
∫
R

fX(dx) (1.11)

⌟



Compound Poisson Process • Definition and Characteristic Function V

Proof of Theorem 1.9.

E
[
eiξYt

]
=

(1.10)
E
[
E
[
eiξYt

∣∣Nt

]]
= E

[
E
[

e
iξ
∑Nt

i=1
Xi

]]
= E

[(
E
[
eiξX1

])Nt
]

=
∞∑

n=0

e−λt (λt)n
(
f̂X(ξ)

)n

n!

= exp
{

λt
(
f̂X(ξ) − 1

)}
=

(1.11)
exp
{

tλ

∫
R

(
eiξx − 1

)
fX(x) dx

}
(1.12)



Compound Poisson Process • Jumps in a Certain Range I

• Let us consider a compound Poisson process Y
[1]

t with intensity λ[1] and
jump size X

[1]
i following the density f

[1]
X (x).

• Suppose we are interested only in jumps of magnitude within the range
[ζ, ζ + ∆ζ).

• Then the jumps within the range [ζ, ζ + ∆ζ) can be considered as a
(thinned) compound Poisson process (denoted Y S1

t ) with intensity:

λ[1]P[1]
[
{X

[1]
i ∈ [ζ, ζ + ∆ζ)}

]
= λ[1]

∫ ζ+∆ζ

ζ

f
[1]
X (x) dx. (1.13)



Compound Poisson Process • Jumps in a Certain Range II

Figure 1.4 Compound Poisson process Y
[1]

i with jumps X
[1]
i and thinned process Y S1

t ,
constructed by selecting only the jumps within the range [ζ, ζ + ∆ζ).



Compound Poisson Process • Jumps in a Certain Range III

• Consider two compound Poisson processes Y
[1]

t and Y
[2]

t with intenisities
λ[1] and λ[2], respectively, and jump sizes following densities f

[1]
X and f

[2]
X ,

respectively.
• By selecting jumps of magnitude only within the range [ζ, ζ + ∆ζ) from

Y
[1]

t and Y
[2]

t , we obtain two compound Poisson processes Y S1
t and Y S2

t .
• The superposition Y S12

t of Y S1
t and Y S2

t is also a compound Poisson
process, with intensity given by:

Λ[1,2](ζ, ∆ζ)

= λ[1]P[1]
[
X

[1]
i ∈ [ζ, ζ + ∆ζ)

]
+ λ[2]P[2]

[
X

[2]
j ∈ [ζ, ζ + ∆ζ)

]
= λ[1]

∫ ζ+∆ζ

ζ

f
[1]
X (x) dx + λ[2]

∫ ζ+∆ζ

ζ

f
[2]
X dx.

(1.14)



Compound Poisson Process • Jumps in a Certain Range IV

Figure 1.5 Superposition Y
[1,2]

t of compound Poisson processes Y
[1]

t and Y
[2]

t and
the superposition Y S12

t of two thinned processes constructed by selecting jumps within
the range [ζ, ζ + ∆ζ).



Compound Poisson Process • Jumps in a Certain Range V

• It is known that we can superpose as many as countable processes, with
the intensity given by:

Λ(ζ, ∆ζ) =
∞∑

i=1

λ[i]P[i]
[
X

[i]
ji

∈ [ζ, ζ + ∆ζ)
]

. (1.15)

• To specify the intensity of the jumps in range [ζ, ζ + ∆ζ) in the
superposed process Y S

t , we only need to determine Λ(ζ, ∆ζ), not
necessarily all λ[i] and P[i].

• For this purpose, we introduce a new function (measure), ν as follows:

Λ(ζ, ∆ζ) =
∫ ζ+∆ζ

ζ

ν(x)dx. (1.16)



Lévy Process • Lévy Measure I

Theorem 1.11
Consider an (at most countable) mixture Yt of compound Poisson processes,
where the intensity is a function of jump size: the jumps in the range
[x, x + dx) occur at intensity ν(x)dx. Then the characteristic function of Yt is
given by the following equation:

E
[
eiξYt

]
= exp

{
t

∫
R

(
eiξx − 1

)
ν(x) dx

}
. (1.17)

⌟

Definition 1.12
We call ν in Eq. (1.17) a Lévy measure.

Remark 1.13
• For a constant λ, ν(x) = λfX(x), where fX is the density of jump size.
• Under measure theory, ν(x) dx in Eq. (1.17) is usually written as ν(dx).
• We typically impose the condition ν(0) = 0 to prevent jumps of size zero.



Lévy Process • Lévy Measure II

Remark 1.14
• We impose the following conditions on the Lévy measure

ν(0) = 0 and (1.18)∫
R

(ν(x) ∧ 1) dx < ∞, (1.19)

where a ∧ b means min(a, b).
• Eq. (1.18) is used to elimate jumps of size zero, wile Eq. (1.19) ensures

the integral in Eq. (1.27) is well-defined.
• Some textbooks set the range of integration to R \ {0} instead of R. In

our settings, we assume ν(0) = 0 and hence this restriction of the range is
not necessary.



Lévy Process • Compensated Process I

•

• The author of this material believes that the compensation in Lévy
processes is best understood through concrete examples.

• To illustrate this, we use the symmetric α-stable process, which is
frequently observed in real-world applications.



Lévy Process • Compensated Process II

Example 1.15

• Let ν(x) = C/|x|α+1, α ∈ (0, 2), which is the Lévy measure of the
symmetric α-stable process.

• Taylor expansion of eiξx is

eiξx = 1 + iξx + 1
2 (iξx)2 + 1

6 (iξx)3 · · · .

• Thus
1
C

(
eiξx − 1

)
ν(x) =

(
eiξx − 1

) 1
|x|1+α

= (iξ) x

|x|1+α
+ (iξ)2

2
x2

|x|1+α
+ (iξ)3

6
x3

|x|1+α
+ · · · .

(1.20)

• As 0 < α < 2, the integral of the term (iξ)x/|x|1+α may diverge, while
the integrals of the other terms converge.



Lévy Process • Compensated Process III

• In order to prevent the integral
∫
R

(
eiξx − 1

)
ν(x)dx from diverging, we

subtract the following term from the integrand:

(iξx)ν(x) = C
iξx

|x|1+α
. (1.21)

• As the first term of (1.20) explodes only at x = 0, the compensation is
necessary only for very small values of |x|. Let η > 0 be small (η ≤ 1, and
it is customary to choose η = 1), and let us define the characteristic
function of the compensated process as follows (where 1 is the indicator
function):

φ(Yt) := exp
{

t

∫
|x|≤η

(
eiξx − 1 − iξx

)
ν(x) dx

+t

∫
|x|>η

(
eiξx − 1

)
ν(x) dx

}
= exp

{
t

∫
R

(
eiξx − 1 − iξx1|x|≤η

)
ν dx

}
.

(1.22)



Lévy Process • Compensated Process IV

• In (1.20), terms xk/|x|1+α are odd functions if k is odd, and even
functions if k is even.

• Thus, in the integration of
(
eiξx − 1 − iξx

)
, odd terms cancel and we

have

1
C

∫
|x|≤η

(
eiξx − 1 − iξx

)
ν(x) dx

=
∫

|x|≤η

{
(iξ)2

2
x2

|x|1+α
+ (iξ)4

4!
x4

|x|1+α
+ · · ·

}
dx.

(1.23)

• As can be seen, the integrand contains only real terms, and the resulting
integral will be a real number. We have the following result:∫

|x|≤η

(
eiξx − 1 − iξx

)
ν(x) dx = −C2ξ2 + C4ξ4 + · · · , (1.24)

where C2, C4, . . . are positive real numbers.



Lévy Process • Compensated Process V

• As η ≤ 1, |C4| ≪ |C2|, we have the follwoing approximation:∫
|x|≤η

(
eiξx − 1 − iξx

)
ν(x) dx ≈ −C2ξ2. (1.25)

• exp
(
−tC2ξ2) with C2 > 0 is the characteristic function of a Brownian

motion.



Lévy Process • Lévy Process I

• So far, we have constructed a stochastic process that consists of jumps,
where different magnitudes of jumps have different intensities of
occurrence. The characteristic function of this process is expressed as
follows:

φYt (ξ) = E
[
eiξYt

]
= exp

{∫
R

(
eiξx − 1 − iξx1|x|≤η

)
ν(x)dx

}
.

(1.26)

• A Lévy process is constructed by adding a Bronian process and a drift
term to this jump process.

Theorem 1.16 (Lévy–Khintchine representation)
The characteristic function of the one-dimensional Lévy process Yt is given by:

φYt (ξ) = exp
{

aiξ − 1
2σ2ξ2 +

∫
R

(
eiξx − 1 − iξx1|x|≤η

)
ν(x)dx

}
. (1.27)

⌟



Lévy Process • Conclusions I

• You have now learned the jump process part of the Lévy process,
including:

• Poisson and compound Poisson processes;
• Superposition of compound Poisson processes;
• Lévy measure;
• Compensation for (potentially infinitely many) small jumps.

• Therefore, if you also learn Brownian motion, you will understand the Lévy
process.

• We have skipped many mathematical subtleties, such as measure theory
and right-continuity. However, the author of this material believes that
what you have learned is sufficient for utilizing the Lévy process in real-life
applications.
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